Answer:
The function
is shifted downwards by 8 units
Explanation:
Given
![y = x](https://img.qammunity.org/2022/formulas/mathematics/high-school/xs1w3uao68kqzbq8elqxr2bgwm25oc4y2y.png)
Required
Determine the transformation that gives:
![y = x-8](https://img.qammunity.org/2022/formulas/mathematics/college/5v17upktlej3wk1p7zt7lk09i8oabv81lf.png)
When a function f(x) is shifted by b units, the new function g(x) is g(x) = f(x) - b
In this case:
![y = x](https://img.qammunity.org/2022/formulas/mathematics/high-school/xs1w3uao68kqzbq8elqxr2bgwm25oc4y2y.png)
![b = 8](https://img.qammunity.org/2022/formulas/mathematics/college/fuvgnpykszl59tzx5m1lyai8u8miag5ytu.png)
So, the new function is:
![y = x - b](https://img.qammunity.org/2022/formulas/mathematics/college/g88xua3ffgdofetj8siqzmpr7ods0awki5.png)
Substitute 8 for b
![y = x - 8](https://img.qammunity.org/2022/formulas/mathematics/college/969jb28obd98jpkhqx31reriowpp8evk1q.png)
Hence, the function is shifted 8 units downward