Answer:

General Formulas and Concepts:
Pre-Algebra
Order of Operations: BPEMDAS
- Brackets
- Parenthesis
- Exponents
- Multiplication
- Division
- Addition
- Subtraction
Algebra I
Algebra II
- Distance Formula:

Explanation:
Step 1: Define
Point P1(0, 0)
Point P2(5, 6)
Step 2: Identify
x₁ = 0, y₁ = 0
x₂ = 5, y₂ = 6
Step 3: Find distance d
Simply plug in the 2 coordinates into the distance formula to find distance d
- Substitute in points [Distance Formula]:

- [Distance] [√Radical] (Parenthesis) Subtract:

- [Distance] [√Radical] Evaluate exponents:

- [Distance] [√Radical] Add:
