2.4k views
16 votes
Find the distance

d(P1.P2) between the given points P1 and P2.
P1 = (0,0)
P2 = (5,6)

User Baldr
by
6.5k points

1 Answer

3 votes

Answer:


\displaystyle d = √(61)

General Formulas and Concepts:

Pre-Algebra

Order of Operations: BPEMDAS

  1. Brackets
  2. Parenthesis
  3. Exponents
  4. Multiplication
  5. Division
  6. Addition
  7. Subtraction
  • Left to Right

Algebra I

  • Coordinates (x, y)

Algebra II

  • Distance Formula:
    \displaystyle d = √((x_2-x_1)^2+(y_2-y_1)^2)

Explanation:

Step 1: Define

Point P1(0, 0)

Point P2(5, 6)

Step 2: Identify

x₁ = 0, y₁ = 0

x₂ = 5, y₂ = 6

Step 3: Find distance d

Simply plug in the 2 coordinates into the distance formula to find distance d

  1. Substitute in points [Distance Formula]:
    \displaystyle d = √((5-0)^2+(6-0)^2)
  2. [Distance] [√Radical] (Parenthesis) Subtract:
    \displaystyle d = √((5)^2+(6)^2)
  3. [Distance] [√Radical] Evaluate exponents:
    \displaystyle d = √(25+36)
  4. [Distance] [√Radical] Add:
    \displaystyle d = √(61)
User Smackcrane
by
6.9k points