Answer:
Option (2)
Explanation:
Given expression is
![\sqrt[3]{64a^6b^7c^9}](https://img.qammunity.org/2022/formulas/mathematics/college/4upw97c7rs1hmc1dj25e0xjt3u2p4bjnvz.png)
By simplifying this expression,
![\sqrt[3]{64a^6b^7c^9}=\sqrt[3]{(4)^3(a^2)^3(b^2)^3(b)(c^3)^3}](https://img.qammunity.org/2022/formulas/mathematics/college/6mbo06pc33u00kwzdc4oiqxekhpr5ptd8a.png)
![=(4a^2b^2c^3)\sqrt[3]{b}](https://img.qammunity.org/2022/formulas/mathematics/college/dgkzuopdmfip6im1vg9jg1qndolit8cd0p.png)
Option (1)
=
![2ab^2c^2\sqrt[3]{a^2c}](https://img.qammunity.org/2022/formulas/mathematics/college/iywc4z9pthk9y727btw8i5nnkl1mtbhx8i.png)
Option (2)
[Fully simplified form]
Option (3)
[Fully simplified form]
Option (4)
![8a^2b^2c^3(\sqrt[3]{b})](https://img.qammunity.org/2022/formulas/mathematics/college/gt3dpurxv1xz9hmborbwaiva64koo57gbi.png)
Expression given in Option (2) is equivalent to the given expression.
Option (2) will be the answer.