p … q … ¬q … p ∨ ¬q … (p ∨ ¬q) ⇒ q
T … T … F … T … T
T … F … T … T … F
F … T … F … F … T
F … F … T … T … F
Start with the first two columns, taking every possible pair of True/False for p and q.
¬q is just the negation of q, so True becomes False and False becomes True.
p ∨ q is the logical disjunction, or logical "or". It's True if either p or q is True, and False otherwise. So p ∨ ¬q is True only if either p or ¬q is True.
p ⇒ q is the logical implication. It's True only when both p and q are True, or when p is False. So (p ∨ ¬q) ⇒ q is True when both p ∨ ¬q and q are True, or when p ∨ ¬q is False.