174,717 views
17 votes
17 votes
Please me in math

(a + 1)/(a - 1) + \frac{ {a - 1}^(2) }{a + 1}


User Ragebiswas
by
2.2k points

2 Answers

19 votes
19 votes

Explanation:

hope this helps you thank you

Please me in math (a + 1)/(a - 1) + \frac{ {a - 1}^(2) }{a + 1} ​-example-1
User Jondavidjohn
by
3.1k points
19 votes
19 votes


\boxed{ \sf{Answer}}


\large{\sf(a + 1)/(a - 1) + \frac{ {a - 1}^(2) }{a + 1}}

Use the algebraic identities ⟶


  1. {\sf(a - b)(a + b) = {a}^(2) - b ^(2)}

  2. {\sf(a + b) {}^(2) = {a}^(2) + 2ab - {b}^(2)}

  3. {\sf(a - b) {}^(2) = {a}^(2) - 2ab + {b}^(2)}

Squaring on both the sides


{\sf\frac{(a + 1 {)}^(2) + ( {a - 1)}^(2) }{(a - 1)(a + 1)}}


=\frac{ {a}^(2) + 2a + 1 + {a}^(2) - 2a + 1 }{ {a}^(2) - 1 } \\ = \frac{ {a}^(2) +\bcancel 2a + 1 + {a}^(2) - \bcancel2a + 1 }{ {a}^(2) - 1 } \\ = \frac{ {a}^(2) + {a}^(2) + 1 + 1 }{ {a}^(2) - 1}


\large\boxed{\sf{⟹\frac{ {2a}^(2) + 2}{ {a}^(2) - 1 }}}

ʰᵒᵖᵉ ⁱᵗ ʰᵉˡᵖˢ

꧁❣ ʀᴀɪɴʙᴏᴡˢᵃˡᵗ2²2² ࿐

User Connorbode
by
2.8k points