375,323 views
18 votes
18 votes
Drag the tiles to the boxes to form correct pairs. Not all tiles will be used.

Match the rectangles formed by the sets of points to their corresponding areas.
A(-9, 8), B(-5,5), C(1, 13), D(-3, 16)
50 square units
E(30, 20), F(39, 29), G(49, 19), H(40, 10)
300 square units
I(-6, 2), J(2, 2), K(2, -8), L(-6, -8)
100 square units
M(5,5), N(11,5), O(11,-5), P(5,-5)
80 square units
Q(10, 0), R(15,5), S(25,-5), T(20,-10)
U(0,5), V(15, 20), W(25, 10), X(10,-5)

Drag the tiles to the boxes to form correct pairs. Not all tiles will be used. Match-example-1
User Leijonien
by
2.9k points

2 Answers

15 votes
15 votes

Answer:

A(-9, 8), B(-5, 5), C(1, 13), D(-3, 16)—

(50 square units)

I(-6, 2), J(2, 2), K(2, -8), L(-6, -8)—

(80 square units)

Q(10, 0), R(15, 5), S(25, -5), T(20, -10)—(100 square units)

U(0, 5), V(15, 20), W(25, 10), X(10, -5)—(300 square units)

Explanation:

got it right on test, hope I helped

User Cprcrack
by
2.7k points
14 votes
14 votes

Answer:

A(-9, 8), B(-5, 5), C(1, 13), D(-3, 16) → 50 square units

I(-6, 2), J(2, 2), K(2, -8), L(-6, -8) → 80 square units

Q(10, 0), R(15, 5), S(25, -5), T(20, -10) → 100 square units

U(0, 5), V(15, 20), W(25, 10), X(10, -5) → 300 square units

Explanation:

The area of a rectangle, given the coordinates of the vertices is found as follows;

1) The vertices of the rectangle ABCD are; A(-9, 8), B(-5, 5), C(1, 13), and D(-3, 16)

The length of side AB = √((-9 - (-5))² + (8 - 5)²) = 5

The length of side BC = √((1 - (-5))² + (13 - 5)²) = 10

The length of side CD = √((1 - (-3))² + (13 - 16)²) = 5

The length of side DA = √(((-9) - (-3))² + (8 - 16)²) = 10

The area of rectangle ABCD = 5 × 10 = 50 square units

2) The vertices of the rectangle EFGH are; E(30, 20), F(39, 29), G(49, 19), and H(40, 10)

The length of side EF= √((39 - 30)² + (29 - 20)²) = 9·√2

The length of side FG = √((39 - 49)² + (29 - 19)²) = 10·√2

The length of side GH = √((40 - 49)² + (10 - 19)²) = 9·√2

The length of side HE = √((40 - 30)² + (10 - 20)²) = 10·√2

The area of rectangle EFGH = 9·√2 × 10·√2 = 180 square units

3) The vertices of the rectangle IJKL are; I(-6, 2), J(2, 2), K(2, -8), and L(-6, -8)

The length of side IJ= √((-6 - 2)² + (2 - 2)²) = 8

The length of side JK= √((2 - 2)² + ((-8) - 2)²) = 10

The area of rectangle IJKL = IJ × JK

∴ The area of rectangle IJKL = 8 × 10 = 80 square units

4) The vertices of the rectangle MNOP are; M(5, 5), N(11, 5), O(11, -5), and P(5, -5)

The length of side MN = √((5 - 11)² + (5 - 5)²) = 6

The length of side NO = √((11 - 11)² + ((-5) - 5)²) = 10

The area of rectangle MNOP = 6 × 10 = 60 square units

5) The vertices of the rectangle QRST are; Q(10, 0), R(15, 5), S(25, -5), and T(20, -10)

The length of side QR = √((10 - 15)² + (0 - 5)²) = 5·√2

The length of side RS = √((25 - 15)² + ((-5) - 5)²) = 10·√2

The area of rectangle QRST = 5·√2 × 10·√2 = 100 square units

6) The vertices of the rectangle UVWX are; U(0, 5), V(15, 20), W(25, 10), and X(10, -5)

The length of side UV = √((0 - 15)² + (5 - 20)²) = 15·√2

The length of side VW = √((25 - 15)² + (10 - 20)²) = 10·√2

The area of rectangle UVWX = 15·√2 × 10·√2 = 300 square units

User John Kealy
by
2.5k points