43.5k views
6 votes
Find the limit if it exists lim x→0 sqrtx+7-sqrt7 over x

User Kasia
by
4.5k points

1 Answer

13 votes

Answer:


(1)/( 2√(7) )

Explanation:


\lim_(x\to 0) ( √(x + 7) - √(7) )/(x) \\ \\ = \lim_(x\to 0) (( √(x + 7) - √(7)) )/(x) * (( √(x + 7) + √(7)) )/(( √(x + 7) + √(7)) ) \\ \\ = \lim_(x\to 0) (( √(x + 7) )^(2) - (√(7))^(2) )/(x( √(x + 7) + √(7))) \\ \\ = \lim_(x\to 0) \frac{( {x + 7} - {7}) }{x( √(x + 7) + √(7))} \\ \\ = \lim_(x\to 0) \frac{ {\cancel x}}{\cancel x( √(x + 7) + √(7))} \\ \\ = \lim_(x\to 0) \frac{ {1}}{√(x + 7) + √(7)} \\ \\ = (1)/( √(0 + 7) + √(7) ) \\ \\ = (1)/( √(7) + √(7) ) \\ \\ = (1)/( 2√(7) )

User Jinhua Wang
by
4.1k points