Answer:
22 units
Explanation:
The perimeter of a polygon is said to be the sum of the length of it's sides.
From the question, we have 5 vertices. This means the polygon is a pentagon. It's given vertices are
A = (−1, 3)
B = (−1, 6)
C = (2, 10)
D = (5, 6)
E = (5, 3)
To find the distance between two points, we use the formula
d = √[(y2 - y1)² + (x2 - x1)²]
Between A and B, we have
d(ab) = √[(6 - 3)² + (-1 --1)²]
d(ab) = √(3²) + 0
d(ab) = √9 = 3
Between B and C, we have
d(bc) = √[(10 - 6)² + (2 --1)²]
d(bc) = √[4² + 3²]
d(bc) = √(16 + 9) = √25 = 5
Between C and D, we have
d(cd) = √[(6 - 10)² + (5 - 2)²]
d(cd) = √[(-4)² + 3²]
d(cd) = √(16 + 9) = √25 = 5
Between D and E, we have
d(de) = √[(3 - 6)² + (5 - 5)²]
d(de) = √(-3)² + 0
d(de) = √9 = 3
Between E and A, we have
d(ea) = √[(3 - 3)² + (5 --1)²]
d(ea) = √[0 + (6)²]
d(ea) = √36 = 6
The perimeter is given as
d(ab) + d(bc) + d(cd) + d(de) + d(ea) =
3 + 5 + 5 + 3 + 6 = 22 units