186,333 views
45 votes
45 votes
Options: (50)^1/2, (65)^1/2, (105)^1/2, (145)^1/2

last sentence options: 55.21, 85.16, 105.26, 114.11

Options: (50)^1/2, (65)^1/2, (105)^1/2, (145)^1/2 last sentence options: 55.21, 85.16, 105.26, 114.11-example-1
User Juan Carlos Moreno
by
2.9k points

1 Answer

24 votes
24 votes

Answer:

Explanation:

Vertices of ΔABC are,

A(-3, 6), B(2, 1) and C(9, 5)

Use the formula to get the distance between two points
(x_1,y_1) and
(x_2,y_2),

Distance =
√((x_2-x_1)^2+(y_2-y_1)^2)

By using the formula,

AB =
√((1-6)^2+(2+3)^2)

=
√(50) units

BC =
√((5-1)^2+(9-2)^2)

=
√(65) units

AC =
√((6-5)^2+(-3-9)^2)

=
√(145)

Use cosine rule to find the measure of ∠ABC.

AC² = AB² + BC²- 2(AB)(BC)cos(B)


(√(145))^2=(√(50))^2+(√(65))^2-2(√(50))(√(65))\text{cosB}

145 = 50 + 65 - 2(√3250)cosB

cos(B) =
-((145-115)/(2√(3250)))

= -0.26312

B =
\text{cos}^(-1)(-0.26312)

B = 105.26°

User Alex Gosselin
by
3.4k points