440,665 views
30 votes
30 votes
Find the equation of the line tangent to y = sin(x) going through х = pi/4​

User Sivann
by
3.0k points

1 Answer

9 votes
9 votes

Answer:


\displaystyle y - (√(2))/(2) = (√(2))/(2) \bigg( x - (\pi)/(4) \bigg)

General Formulas and Concepts:

Algebra I

Coordinates (x, y)

Functions

Function Notation

Point-Slope Form: y - y₁ = m(x - x₁)

  • x₁ - x coordinate
  • y₁ - y coordinate
  • m - slope

Pre-Calculus

  • Unit Circle

Calculus

Derivatives

  • The definition of a derivative is the slope of the tangent line

Derivative Notation

Trig Derivative:
\displaystyle (d)/(dx)[sin(u)] = u'cos(u)

Explanation:

Step 1: Define

Identify


\displaystyle y = sin(x)


\displaystyle x = (\pi)/(4)

Step 2: Differentiate

  1. Trig Derivative:
    \displaystyle y' = cos(x)

Step 3: Find Tangent Slope

  1. Substitute in x [Derivative]:
    \displaystyle y' \bigg( (\pi)/(4) \bigg) = cos \bigg( (\pi)/(4) \bigg)
  2. Evaluate [Unit Circle]:
    \displaystyle y' \bigg( (\pi)/(4) \bigg) = (√(2))/(2)

Step 4: Find Tangent Equation

  1. Substitute in x [Function y]:
    \displaystyle y \bigg( (\pi)/(4) \bigg) = sin \bigg( (\pi)/(4) \bigg)
  2. Evaluate [Unit Circle]:
    \displaystyle y \bigg( (\pi)/(4) \bigg) = (√(2))/(2)
  3. Substitute in variables [Point-Slope Form]:
    \displaystyle y - (√(2))/(2) = (√(2))/(2) \bigg( x - (\pi)/(4) \bigg)

Topic: AP Calculus AB/BC (Calculus I/I + II)

Unit: Derivatives

Book: College Calculus 10e

User Sledgeweight
by
2.4k points