262,235 views
36 votes
36 votes
PLZ help asap :-/
............................ ​

PLZ help asap :-/ ............................ ​-example-1
User Nishuthan S
by
3.0k points

1 Answer

22 votes
22 votes

Step-by-step explanation:

[16]


\underline{\boxed{\large{\bf{Option \; A!! }}}}

Here,


  • \rm { R_1} = 2Ω

  • \rm { R_2} = 2Ω

  • \rm { R_3} = 2Ω

  • \rm { R_4} = 2Ω

We have to find the equivalent resistance of the circuit.

Here,
\rm { R_1} and
\rm { R_2} are connected in series, so their combined resistance will be given by,


\longrightarrow \rm { R_((1,2)) = R_1 + R_2} \\


\longrightarrow \rm { R_((1,2)) = (2 + 2) \; Omega} \\


\longrightarrow \rm { R_((1,2)) = 4 \; Omega} \\

Now, the combined resistance of
\rm { R_1} and
\rm { R_2} is connected in parallel combination with
\rm { R_3}, so their combined resistance will be given by,


\longrightarrow \rm {(1)/( R_((1,2,3))) = (1)/(R_((1,2))) + (1)/(R_3) } \\


\longrightarrow \rm {(1)/( R_((1,2,3))) = \Bigg ( (1)/(4) + (1)/(2) \Bigg ) \;\Omega} \\


\longrightarrow \rm {(1)/( R_((1,2,3))) = \Bigg ( (1 + 2)/(4) \Bigg ) \;\Omega} \\


\longrightarrow \rm {(1)/( R_((1,2,3))) = \Bigg ( (3)/(4) \Bigg ) \;\Omega} \\

Reciprocating both sides,


\longrightarrow \rm {R_((1,2,3))= (4)/(3) \;\Omega} \\

Now, the combined resistance of
\rm { R_1},
\rm { R_2} and
\rm { R_3} is connected in series combination with
\rm { R_4}. So, equivalent resistance will be given by,


\longrightarrow \rm {R_((1,2,3,4))= R_((1,2,3)) + R_4} \\


\longrightarrow \rm {R_((1,2,3,4))= \Bigg ( (4)/(3) + 2 \Bigg ) \; \Omega} \\


\longrightarrow \rm {R_((1,2,3,4))= \Bigg ( (4 + 6)/(3) \Bigg ) \; \Omega} \\


\longrightarrow \rm {R_((1,2,3,4))= \Bigg ( (10)/(3) \Bigg ) \; \Omega} \\


\longrightarrow \bf {R_((1,2,3,4))= 3.33 \; \Omega} \\

Henceforth, Option A is correct.

_________________________________

[17]


\underline{\boxed{\large{\bf{Option \; B!! }}}}

Here, we have to find the amount of flow of current in the circuit. By using ohm's law,


\longrightarrow V = IR


\longrightarrow 3 = I × 3.33


\longrightarrow 3 ÷ 3.33 = I


\longrightarrow 0.90 Ampere = I

Henceforth, Option B is correct.

____________________________


\tt \purple{Hope \; it \; helps \; you, Army! \heartsuit } \\

PLZ help asap :-/ ............................ ​-example-1
User Dader
by
2.8k points