341,857 views
17 votes
17 votes
Find the TWO integers whos product is -12 and whose sum is 1


User Sebastian S
by
2.8k points

2 Answers

30 votes
30 votes

Let integers be x and x-1

ATQ

  • x+x-1=1


\\ \sf\longmapsto 2x-1=1


\\ \sf\longmapsto 2x=1+1


\\ \sf\longmapsto 2x+2


\\ \sf\longmapsto x=(2)/(2)


\\ \sf\longmapsto x=1

Now


\\ \sf\longmapsto x-1=1-1=0

  • The integers are 1 and 0

But

Integers can be x and 1-x as their sum is 1


\\ \sf\longmapsto x(1-x)=-12


\\ \sf\longmapsto x- x^2=-12


\\ \sf\longmapsto x^2-x-12=0


\\ \sf\longmapsto x^2-4x+3x-12=0


\\ \sf\longmapsto x(x-4)+3(x-4)=0


\\ \sf\longmapsto (x-4)(x+3)=0


\\ \sf\longmapsto x=4,-3

User Tahmid Ali
by
2.5k points
7 votes
7 votes

Answer:


\rm Numbers = 4 \ and \ -3.

Explanation:

Given :-

The sum of two numbers is 1 .

The product of the nos . is 12 .

And we need to find out the numbers. So let us take ,

First number be x

Second number be 1-x .

According to first condition :-


\rm\implies 1st \ number * 2nd \ number= -12\\\\\rm\implies x(1-x)=-12\\\\\rm\implies x - x^2=-12\\\\\rm\implies x^2-x-12=0\\\\\rm\implies x^2-4x+3x-12=0\\\\\rm\implies x(x-4)+3(x-4)=0\\\\\rm\implies (x-4)(x+3)=0\\\\\rm\implies\boxed{\red{\rm x = 4 , -3 }}

Hence the numbers are 4 and -3

User Udenyi
by
3.1k points