Answer:
R is 545.72.
Step-by-step explanation:
This can be calculated using the formula for calculating the present value (PV) of a growing annuity as follows:
PVga = (R / (r - g)) * (1 – ((1 + g) / (1 + r))^n) .................... (1)
Where;
PVga = Present value of the growing annuity or the value of the buyout package = 100,000
R = The first monthly benefit = ?
r = Monthly effective interest rate = annual effective interest rate / 12 = 6% / 12 = 0.06 / 12 = 0.005
g = monthly growth rate of monthly benefits = Annual CPI / 12 = 3.2% / 12 = 0.032 / 12 = 0.00266666666666667
n = number of months = Number of years * Number of months in a year = 20 * 12 = 240
Substituting the values into equation (1), we have:
100,000 = (R / (0.005 - 0.00266666666666667)) * (1 - ((1 + 0.00266666666666667) / (1 + 0.005))^240)
100,000 = (R / 0.00233333333333333) * 0.427568259925511
100,000 / 0.427568259925511 = R / 0.00233333333333333
233,880.784362762 = R / 0.00233333333333333
R = 233,880.784362762 * 0.00233333333333333
R = 545.721830179777
Rounding to 2 decimal places, we have:
R = 545.72
Therefore, R is 545.72.