Answer and Step-by-step explanation: This function is a probability density function of a random variable X:
![f(x)=(3(8x-x^(2)))/(256)](https://img.qammunity.org/2022/formulas/mathematics/college/30ln7t29heqpx7ngb3bk8c146lgafy67jj.png)
and to calculate probabilities, we will have to integrate it:
![P(X<x)=\int\limits^x_0 {(3)/(256)(8x-x^(2)) } \, dx](https://img.qammunity.org/2022/formulas/mathematics/college/1059u7sf7wibpzyyh3gycq7tatsyxlj7i5.png)
Solving:
![P(X<x)=(3)/(256)(4x^(2)-(x^(3))/(3) )](https://img.qammunity.org/2022/formulas/mathematics/college/v3z1tjgkignkz9cc3pz7plry6k1b0krdaz.png)
Then:
a. P(X < 5)
![P(X<5)=\int\limits^5_0 {(3)/(256)(8x-x^(2)) } \, dx](https://img.qammunity.org/2022/formulas/mathematics/college/i8xtxy5us6bl9k1fyvg4kpizf1s79rrgxk.png)
![P(X<5)=(3)/(256)(100-(125)/(3) )](https://img.qammunity.org/2022/formulas/mathematics/college/q19cn9ejmx0gotofi5p3xv81wq6ibx63bi.png)
![P(X<5)=(3)/(256)((300-125)/(3) )](https://img.qammunity.org/2022/formulas/mathematics/college/41dmp9f7807h4qb696h80iczdcjpi2yck0.png)
![P(X<5)=(175)/(256)](https://img.qammunity.org/2022/formulas/mathematics/college/rjxj2ghq4xk1m9kygekfmwfjlyx1b6sgar.png)
P(X < 5) = 0.683
b. P(X < 9)
Since density function's upper limit is 8, probability of x < 9 is 100% or 1.
So, P(X < 9) = 1
c. P(5 < X < 7)
![P(5<X<7)=\int\limits^7_5 {(3)/(256)(8x-x^(2)) } \, dx](https://img.qammunity.org/2022/formulas/mathematics/college/6jp2b5njvog57m30xh3jnv9rmue07wilj2.png)
![P(5<X<7)=(3)/(256)[4(7)^(2)-(7^(3))/(3)-4(5)^(2)+(5^(3))/(3)]](https://img.qammunity.org/2022/formulas/mathematics/college/dbk9llbf98v9qz84u51mr5dkhmay4n2mxu.png)
![P(5<X<7)=(3)/(256)[96-(218)/(3) ]](https://img.qammunity.org/2022/formulas/mathematics/college/tcc0l0pijvu66jy27k4wck0sz1rxqnzbe0.png)
![P(5<X<7)=(70)/(256)](https://img.qammunity.org/2022/formulas/mathematics/college/rlvdxndpxpgq9sj3pt9gnz8gcwj02i0bgj.png)
P(5 < X < 7) = 0.273
d. P(X > 3)
![P(X>3)=\int\limits^8_3 {(3)/(256)(8x-x^(2)) } \, dx](https://img.qammunity.org/2022/formulas/mathematics/college/rb9xqum2vibz8ymk55z58npbccff4efzes.png)
![P(X>3)=(3)/(256)[256-(512)/(3)-36+9 ]](https://img.qammunity.org/2022/formulas/mathematics/college/ea5hkvycpfzkhnjqvod2te1ja7bselawfc.png)
![P(X>3)=(3)/(256)(229-(512)/(3) )](https://img.qammunity.org/2022/formulas/mathematics/college/csidbip2brihjoasa2qqc0lz1fm2ewp0dx.png)
![P(X>3)=(175)/(256)](https://img.qammunity.org/2022/formulas/mathematics/college/whxifjni9t6ja6p691nvs7cwwb5vvzxv8b.png)
P (X > 3) = 0.683
e. P(X < x) = 0.95
![0.95=\int\limits^x_0 {(3)/(256)(8x-x^(2)) } \, dx](https://img.qammunity.org/2022/formulas/mathematics/college/ztngl5hzshf4tkgremai43sll648ktbhce.png)
![(3)/(256)[(12x^(2)-x^(3))/(3) ] =0.95](https://img.qammunity.org/2022/formulas/mathematics/college/9pp4lygtyuccbj5ttr0k3sl0gkcvo9wr02.png)
![(12x^(2)-x^(3))/(256)=0.95](https://img.qammunity.org/2022/formulas/mathematics/college/io07mvy2pqn8o2jp62hnca2eejyn51jspg.png)
![12x^(2)-x^(3)=243.2](https://img.qammunity.org/2022/formulas/mathematics/college/tat51a8vcfleklfih66ib2m2wdzuuobdb5.png)
![-x^(3)+12x^(2)-243.2=0](https://img.qammunity.org/2022/formulas/mathematics/college/k222uojgsnu6zc6ga88qnigwyhtumobpf9.png)
Solving this cubic equation, we have three values for x:
x₁ = -3.909
x₂ = 8.992
x₃ = 6.917
The value of x will the one between 0 and 8, which are the limits of the function. So, value of x which gives a probability of 0.95 is x = 6.917.