The question is incomplete, the complete question is;
It takes 338. kJ/mol to break an carbon-chlorine single bond. Cal broken by absorbing a single photon Iculate the maximum wavelength of light for which an carbon-chiorine single bond could be Round your answer to 3 significant digits
Answer:
3.55 × 10^-7 m or 355 nm
Step-by-step explanation:
Now, the energy of the photon = 338 × 10^3/6.02 × 10^23 = 5.61 × 10^-19 J
Recall that;
E= hc/λ
h= planks constant
c= speed of light
λ = wavelength
λ =hc/E
λ = 6.63 ×10^-34 × 3 × 10^8/5.61 × 10^-19
λ =3.55 × 10^-7 m or 355 nm