Answer:
There is no significance evidence that students who completed two years of college had a higher average than students who had only completed high school.
Explanation:
The hypothesis :
H0 : μ1 = μ2
H1 : μ1 > μ2
Given :
n1 = 35 ; x1 = 75.1 ; s1 = 12.8
n2 = 50 ; x2 = 72.1 ; s2 = 14.6
Pooled variance = Sp² = (df1*s1² + df2*s2²) ÷ (n1 + n2 - 2)
df1 = n1 - 1 = 35 - 1 = 34
df2 = n2 - 1 = 50 - 1 = 49
(x1 - x2) ÷ Sp(√(1/n1 + 1/n2))
Sp² = (34*12.8^2 + 49*14.6^2) / (35+50-2)
Sp² = (5570.56 + 10444.84) / 83
Sp² = 192.95662
Sp = √192.95662
Sp = 13.89
Test statistic = (75.1 - 72.1) / 13.89 * √(1/35 + 1/50)
Test statistic = 3 / (13.89 * 0.2203892)
Test statistic = 0.980
df = n1 + n2 - 2
df = 35 + 50 - 2 = 83
Using the Pvalue calculator :
Pvalue(0.980, 83) = 0.165
α = 0.1
Pvalue > α ; We fail to reject the H0; and conclude that there is no significance evidence that students who completed two years of college had a higher average than students who had only completed high school.