μ = Σ (X * P(X))
σ = √[Σ ((X - μ)² * P(X))]
Mean (Expected Value):
μ = (1 * 0.238) + (2 * 0.136) + (3 * 0.126) + (4 * 0.096) + (5 * 0.058) + (6 * 0.033) + (7 * 0.026) + (8 * 0.287)
μ = 0.238 + 0.272 + 0.378 + 0.384 + 0.29 + 0.198 + 0.182 + 2.296
μ = 4.034 hours
Standard Deviation:
σ = √[(1-4.034)^2 * 0.238 + (2-4.034)² * 0.136 + (3-4.034)² * 0.126 + (4-4.034)² * 0.096 + (5-4.034)² * 0.058 + (6-4.034)² * 0.033 + (7-4.034)² * 0.026 + (8-4.034)² * 0.287]
σ = √[(9.66 * 0.238) + (4.139 * 0.136) + (1.0716 * 0.126) + (0.001224 * 0.096) + (0.092* 0.058) + (7.949 * 0.033) + (9.236 * 0.026) + (15.77 * 0.287)]
σ = √[2.301 + 0.563 + 0.134 + 0.000117 + 0.00535 + 0.2617 + 0.0602 + 4.532]
σ = √(7.858)
σ ≈ 2.80 hours
Therefore, mean is approximately 4.03 hours, and the standard deviation is approximately 2.80 hours.
Multiply both with $4.75 to get the mean and standard deviation of the amount of revenue each car generates.
μ = 4.03 * 4.75
μ = $19.14
σ = 2.80 * 4.75
σ = $13.30