Answer:
Explanation:
To simplify the given expression, let's break it down step by step:
1/12n + (6 / 12) * (0.11 * (110 - 24) / 6) + ((-³ ² - 0 + ²) + (₁ ² - ² / 2)) ² / n²
Simplifying each part individually:
1/12n simplifies to 1/12n
(6 / 12) * (0.11 * (110 - 24) / 6) simplifies to (1/2) * (0.11 * 86 / 6)
(-³ ² - 0 + ²) + (₁ ² - ² / 2) simplifies to (-³ ² + ²) + (₁ ² - ² / 2)
Now, let's simplify further:
(1/2) * (0.11 * 86 / 6) = 0.055 * 86 / 6 = 0.94583333333
(-³ ² + ²) + (₁ ² - ² / 2) = (-9 + 4) + (1 - ² / 2) = -5 + (1 - ² / 2)
Finally, let's substitute the simplified expressions back into the original equation:
1/12n + 0.94583333333 + (-5 + (1 - ² / 2)) ² / n²
Therefore, the equivalent expression is:
1/12n + 0.94583333333 + (-5 + (1 - ² / 2)) ² / n²