\[x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}\]
In this equation, \(a = -6\), \(b = 100\), and \(c = -180\).
Now, plug these values into the quadratic formula:
\[x = \frac{-100 \pm \sqrt{100^2 - 4(-6)(-180)}}{2(-6)}\]
Simplify the equation to find the zeros:
\[x = \frac{-100 \pm \sqrt{10000 - 4320}}{-12}\]
\[x = \frac{-100 \pm \sqrt{5680}}{-12}\]
Now, you can simplify further:
\[x = \frac{-100 \pm 2\sqrt{1420}}{-12}\]
\[x = \frac{-50 \pm \sqrt{355}}{-6}\]
So, the zeros of the quadratic function are:
\[x_1 = \frac{-50 + \sqrt{355}}{-6}\]
\[x_2 = \frac{-50 - \sqrt{355}}{-6}\]