Final answer:
The correct critical value for a 6% significance level, left-tailed one-mean z-test is -1.645, as it places 6% in the left tail of the normal distribution.
Step-by-step explanation:
In a one-mean z-test, the critical value is determined by the significance level and the direction of the hypothesis test. At a 6% significance level for a left-tailed test (where the alternative hypothesis is ), we are interested in the z-value that puts 6% in the left tail of the normal distribution. According to standard z-tables, the critical z-value that corresponds to an area of 0.06 in the left tail is slightly more extreme than -1.645.
Therefore, the correct critical value for a 6% significance level, left-tailed test is -1.645. This is the value that has approximately 0.06 to its left and would be the cutoff for rejecting the null hypothesis. Rejecting the null hypothesis means that there is enough evidence to support the alternative hypothesis that the true mean is less than the hypothesized mean.