\(5(2c+5)-5c=2(3c+2)+11\)AlgebraTrigonometryCalculus1 of 3⬚⬚⬚⬚√<()AC⬚⬚|⬚|≤789÷log⬚⬚!>456×i%≥123−xy=0.+2 of 3sincostan()ACcscseccot789÷arcsinarccosarctan456×⬚2⬚°π123−xy=0.+3 of 3⬚∞⬚⬚√()AClim⬚→⬚lim⬚→⬚+lim⬚→⬚−789÷log⬚(,)(,)456×Σ∫⬚∫⬚⬚⬚123−xye0.+ Solve 1Simplify the expression\(5(2c+5)-5c=2(3c+2)+11\)Distribute\(\textcolor{#B14BA5}{5(2c+5)}-5c=2(3c+2)+11\)\(\textcolor{#B14BA5}{10c+25}-5c=2(3c+2)+11\)Combine like terms\(\textcolor{#B14BA5}{10c}+25\textcolor{#B14BA5}{-5c}=2(3c+2)+11\)\(\textcolor{#B14BA5}{5c}+25=2(3c+2)+11\)Distribute\(5c+25=\textcolor{#B14BA5}{2(3c+2)}+11\)\(5c+25=\textcolor{#B14BA5}{6c+4}+11\)Add the numbers\(5c+25=6c+\textcolor{#B14BA5}{4}+\textcolor{#B14BA5}{11}\)\(5c+25=6c+\textcolor{#B14BA5}{15}\)\(5c+25=6c+15\)2Subtract \(25\) from both sides\(5c+25=6c+15\)\(5c+25\textcolor{#B14BA5}{-25}=6c+15\textcolor{#B14BA5}{-25}\)3Simplify the expression\(5c+25-25=6c+15-25\)Subtract the numbers\(5c+\textcolor{#B14BA5}{25}\textcolor{#B14BA5}{-25}=6c+15-25\)\(5c=6c+15-25\)Subtract the numbers\(5c=6c+\textcolor{#B14BA5}{15}\textcolor{#B14BA5}{-25}\)\(5c=6c\textcolor{#B14BA5}{-10}\)\(5c=6c-10\)4Subtract \(6c\) from both sides\(5c=6c-10\)\(5c\textcolor{#B14BA5}{-6c}=6c-10\textcolor{#B14BA5}{-6c}\)5Simplify the expression\(5c-6c=6c-10-6c\)Combine like terms\(\textcolor{#B14BA5}{5c}\textcolor{#B14BA5}{-6c}=6c-10-6c\)\(\textcolor{#B14BA5}{-c}=6c-10-6c\)Combine like terms\(-c=\textcolor{#B14BA5}{6c}-10\textcolor{#B14BA5}{-6c}\)\(-c=-10\)\(-c=-10\)6Divide both sides by the same factor\(-c=-10\)\(\frac{-c}{\textcolor{#B14BA5}{-1}}=\frac{-10}{\textcolor{#B14BA5}{-1}}\)7Simplify the expression\(\frac{-c}{-1}=\frac{-10}{-1}\)Cancel terms that are in both the numerator and denominator\(\textcolor{#B14BA5}{\frac{-c}{-1}}=\frac{-10}{-1}\)\(\textcolor{#B14BA5}{c}=\frac{-10}{-1}\)Divide the numbers\(c=\textcolor{#B14BA5}{\frac{-10}{-1}}\)\(c=\textcolor{#B14BA5}{10}\)\(c=10\)4 more stepsShow less Solution \(c=10\)