27.0k views
4 votes
Given sec A= sqrt(53)/2 and that angle A is in Quadrant IV, find the exact value of sin Ain simplest radical form using a rational denominator.

1 Answer

1 vote

Answer:


\sin A=-(7√(53))/(53)

Explanation:

Given value of sec A:


\sec A=(√(53))/(2)

To find the value of sin A, we can use the following trigonometric identities:


\boxed{\begin{array}{c}\underline{\textsf{Trigonometric Identities }}\\\\\sec x=(1)/(\cos x)\\\\\sin^2x + \cos^2x=1\end{array}}

Find cos A:


\sec A=(√(53))/(2)\implies (1)/(\cos A)=(√(53))/(2)\implies \cos A=(2)/(√(53))

Substitute cos A into the trigonometric identity and solve for sin A:


\begin{aligned}\sin^2A+\left((2)/(√(53))\right)^2&=1\\\\\sin^2A+(4)/(53)&=1\\\\\sin^2A&=1-(4)/(53)\\\\\sin^2A&=(53-4)/(53)\\\\\sin^2A&=(49)/(53)\\\\\sin A&=\pm\sqrt{(49)/(53)}\\\\\sin A&=\pm (7)/(√(53))\\\\\sin A&=\pm (7√(53))/(53)\end{aligned}

As sine is negative in Quadrant IV, then:


\large\boxed{\boxed{\sin A=-(7√(53))/(53)}}

User Evangelist
by
8.1k points