Answer:
AC = 10
Explanation:
Given:
AC = 5n - 5
AB = 8n - 19
Since
DE bisects the line AC at point B.
Then AB is twice of AC.
So,
2AB = AC
Substitute the value
2(8n-19) = 5n - 5
Open bracket
16n - 38 = 5n - 5
Add 38 and subtract 5n on both sides
16n - 38+38-5n = 5n - 5 + 38-5n
Simplify:
11n = 33

n = 3
Now
AC = 5n - 5
Substitute value of n.
AC= 5×3 - 5 = 15 -5 = 10
Therefore,
AC = 10