82.3k views
20 votes
Use quadrilateral ABCD with A(1, 5), B(2, 6), C(3, 3) and D(1, 3) and its transformation A'B'C'D' with A'(-3, 1), B'(0, 4), C'(3, -5) and D'(-3, -5). What is the scale factor of the transformation

1 Answer

3 votes

Answer:

The scale factor that transforms quadrilateral ABCD to quadrilateral A'B'C'D' is 3

Explanation:

Quadrilateral ABCD has the following coordinates

A(1, 5), B(2, 6), C(3, 3) and D(1, 3)

The image A'B'C'D' has the following coordinates;

A'(-3, 1), B'(0, 4), C'(3, -5), D'(-3, -5)

The length of segment
\overline {AB} = √((2 - 1)² + (6 - 5)²) = √2

The length of segment
\overline {BC} = √((3 - 6)² + (3 - 2)²) = √10

The length of segment
\overline {CD} = √((1 - 3)² + (3 - 3)²) = 2

The length of segment
\overline {DA} = √((1 - 1)² + (3 - 5)²) = 2

For quadrilateral, we have;

A'(-3, 1), B'(0, 4), C'(3, -5), D'(-3, -5)

The length of segment
\overline {A'B'} = √(0 - (-3))² + (4 - 1)²) = 3·√2

The length of segment
\overline {B'C'} = √((3 - 0)² + (-5 - 4)²) = 3·√10

The length of segment
\overline {C'D'} = √((-3) - 3)² + (-5 - (-5))²) = 6

The length of segment
\overline {D'A'} = √((-3) - (-3))² + ((-5) - 1)²) = 6

The scale factor that transforms quadrilateral ABCD to A'B'C'D' is given as follows;


The \, scale \, factor \, of \, transformation = \frac{\overline {A'B'}}{\overline {AB}} = \frac{\overline {B'C'}}{\overline {BC}} = \frac{\overline {C'D'}}{\overline {CD}} = \frac{\overline {D'A'}}{\overline {DA}} = 3

Therefore, the scale factor that transforms quadrilateral ABCD to A'B'C'D' = 3

User ThriceGood
by
7.2k points

No related questions found

Welcome to QAmmunity.org, where you can ask questions and receive answers from other members of our community.

9.4m questions

12.2m answers

Categories