Answer:
"The rocket does not reach escape velocity."
Step-by-step explanation:
% Define time vector from 0 to 50 seconds with a step size of 1.
t = 0:1:50;
% Initialize velocity vector.
v = zeros(size(t));
% Calculate velocities for each time interval.
% Use relational operators to determine the appropriate equation.
v(t >= 0 & t < 5) = 100*t(t >= 0 & t < 5);
v(t >= 5 & t < 10) = 500;
v(t >= 10 & t < 15) = 2000 - 100*t(t >= 10 & t < 15);
v(t >= 15 & t <= 50) = 500 - 10*(t(t >= 15 & t <= 50) - 15);
% Calculate the maximum velocity.
max_velocity = max(v);
% Escape velocity from Mercury (you can change this value if needed).
escape_velocity_mercury = 4250;
% Determine if the rocket reaches escape velocity.
if max_velocity >= escape_velocity_mercury
fprintf('The rocket reaches escape velocity.\\');
else
fprintf('The rocket does not reach escape velocity.\\');
end
% Generate a plot of velocity over time.
figure;
plot(t, v, 'b', 'LineWidth', 1.5);
xlabel('Time (s)');
ylabel('Velocity (m/s)');
title('Rocket Velocity vs. Time');
grid on;
% Display the maximum velocity and escape velocity.
fprintf('Maximum velocity: %.2f m/s\\', max_velocity);
fprintf('Escape velocity from Mercury: %d m/s\\', escape_velocity_mercury);
Sorry if the code is formatted incorrectly.