Final answer:
The change in entropy of a gas during an isothermal expansion can be calculated using the formula: ΔS = nR ln(Vf/Vi). In this case, the calculated change in entropy exceeds 0.9 J/K, so the statement is true.
Step-by-step explanation:
The change in entropy of a gas during an isothermal expansion can be calculated using the formula:
ΔS = nR ln(Vf/Vi)
Where ΔS is the change in entropy, n is the number of moles of gas, R is the gas constant, Vf is the final volume, and Vi is the initial volume.
In this case, we are given the initial and final volumes and the number of moles of nitrogen gas (which can be calculated using the molar mass of nitrogen and the mass given). Plugging in these values, we can compare the calculated change in entropy to the value given in the question to determine if it exceeds 0.9 J/K.
Example Calculation:
n = mass / molar mass = 4g / 28 g/mol = 0.143 mol
ΔS = 0.143 mol * 8.314 J/(mol*K) * ln(750 cm³ / 500 cm³) ≈ 1.96 J/K
Since the calculated change in entropy (1.96 J/K) is greater than 0.9 J/K, the statement is true.