Explanation:
we remember
(a×b)^c = a^c × b^c
and, of course, the other way around.
any root is also an exponent.
![\sqrt[c]{a} = {a}^{ (1)/(c) }](https://img.qammunity.org/2024/formulas/mathematics/high-school/u2wz87imodu7zt89mfofs0gq5xonr2h4yc.png)
and if c is an odd number, then a can be a negative number, making the result a negative number, as e.g. for c = 3
-a×-a×-a = -a³
so,
![\sqrt[3]{3} * \sqrt[3]{ - 250} = \sqrt[3]{3 * - 250} =](https://img.qammunity.org/2024/formulas/mathematics/high-school/a1e5szpd8mrwi14nav8smbqtqtonced1au.png)
![= \sqrt[3]{ - 750} = \sqrt[3]{ - 125 * 6} =](https://img.qammunity.org/2024/formulas/mathematics/high-school/k5nbxc0y5sp8s51zfxezw19fyfzlbu9fq4.png)
![= \sqrt[3]{ - {5}^(3) * 6} = \sqrt[3]{ - {5}^(3) } * \sqrt[3]{6} =](https://img.qammunity.org/2024/formulas/mathematics/high-school/ucebl2ua6nfglyvuo6z5qhk5p1kulr9vyl.png)
![= - 5 * \sqrt[3]{6} =](https://img.qammunity.org/2024/formulas/mathematics/high-school/92cclokkgkn4ek72hhfge129m9txv79iuy.png)
= -9.085602964...