120k views
3 votes
Answer this:

Let,

f(x) = x^2 + 7x - 10

g(x) = x + 2
Solution:

\begin{aligned}(f \circ g)(x)& = f(g(x)) \\ &=\end{aligned}


User Eselk
by
7.6k points

2 Answers

4 votes

Answer:


\sf (f \circ g)(x) = x^2 + 11x + 8

Explanation:

Given:


f(x) = x^2+7x-10

g(x) = x+2

To find:

(f \circ g)(x)

Solution:

First substitute g(x) into f(x).

This means we replace x in f(x) with g(x) So, we have:

\sf f \circ g)(x) = f(g(x)) = f(x + 2)
Now, let's substitute x + 2 into f(x):

\sf (f \circ g)(x) = (x + 2)^2 + 7(x + 2) - 10
Now, expand and simplify this expression:

\sf (f \circ g)(x) = x^2 + 4x + 4 + 7x + 14 - 10
Combine like terms:

\sf (f \circ g)(x) = x^2 + 11x + 18 - 10
Simplify further, we get:

\sf (f \circ g)(x) = x^2 + 11x +8

Therefore,


\sf (f \circ g)(x) = x^2 + 11x + 8

User PPS
by
8.9k points
5 votes

Answer:



\Huge \boxed{\boxed{\bf{(f \circ g)(x) = x^2 + 11x + 8}}}

Explanation:

Given the functions
\tt{f(x) = x^2 + 7x - 10} and
\tt{g(x) = x + 2}, you want to find the composite function
\tt{(f \circ g)(x) = f(g(x))}.

To do this, substitute
\tt{g(x)} into
\tt{f(x)} wherever you see
\tt{x}:


  • \tt{(f \circ g)(x) = f(g(x)) = (g(x))^2 + 7(g(x)) - 10}}

Now, substitute the expression for
\tt{g(x)}:


  • \tt{(f \circ g)(x) = (x + 2)^2 + 7(x + 2) - 10}

Expand and simplify the expression:


  • \tt{(f \circ g)(x) = (x^2 + 4x + 4) + 7x + 14 - 10 = x^2 + 11x + 8}

So, the composite function
\tt{(f \circ g)(x) = x^2 + 11x + 8}.


#BTH1

__________________________________________________________

User Sarang
by
8.0k points

Related questions