Answer:
The contrapositive of the statement is true.
Explanation:
For a general statement:
p ⇒ q
The contrapositive statement is:
¬q ⇒ ¬p
where:
¬q is the negation of the proposition q.
Here we have the statement:
If two angles are not complements, then their measures do not add up to 180°
So we have:
p = two angles are not complements
q = their measures do not add up to 180°
Then the negations are:
¬p = two angles are complements
¬q = their measures do add up to 180°
The contrapositive statement is:
"if for two angles their measures do add up to 180°, then the two angles are complements"
This is true, if for two angles the sum of their measures is equal to 180°, then these angles are complementary.
Then: The contrapositive of the statement is true.