213k views
0 votes
X

f(x) = x+1¹ g(x) =
1'
(a)
(f + g)(x) =
(b) (f- g)(x) =
(c) (fg)(x) =
1
+7.
(d) (f/g)(x) =
X
What is the domain of f/g? (Enter your answer using interval notati

X f(x) = x+1¹ g(x) = 1' (a) (f + g)(x) = (b) (f- g)(x) = (c) (fg)(x) = 1 +7. (d) (f-example-1

1 Answer

4 votes

Answer:


\textsf{a)}\quad (f+g)(x)=(x^5+x+1)/(x^5+x^4)


\textsf{b)}\quad (f-g)(x)=(x^5-x-1)/(x^5+x^4)


\textsf{c)}\quad (fg)(x)=(1)/(x^4+x^3)


\textsf{d)}\quad (f/g)(x)=(x^5)/(x+1)

The domain of (f/g)(x) is (-∞, -1) ∪ (-1, 0) ∪ (0, ∞).

Explanation:

Given functions:


f(x)=(x)/(x+1)


g(x)=(1)/(x^4)

a) To calculate (f + g)(x), we need to add the functions f(x) and g(x) together.


\begin{aligned}(f+g)(x)&=f(x)+g(x)\\\\&=(x)/(x+1)+(1)/(x^4)\\\\&=(x\cdot x^4)/((x+1)\cdot x^4)+(1\cdot (x+1))/(x^4\cdot (x+1))\\\\&=(x^5)/(x^4(x+1))+((x+1))/(x^4(x+1))\\\\&=(x^5+(x+1))/(x^4(x+1))\\\\&=(x^5+x+1)/(x^5+x^4)\end{aligned}

b) To calculate (f - g)(x), we need to subtract function g(x) from function f(x):


\begin{aligned}(f-g)(x)&=f(x)-g(x)\\\\&=(x)/(x+1)-(1)/(x^4)\\\\&=(x\cdot x^4)/((x+1)\cdot x^4)-(1\cdot (x+1))/(x^4\cdot (x+1))\\\\&=(x^5)/(x^4(x+1))-((x+1))/(x^4(x+1))\\\\&=(x^5-(x+1))/(x^4(x+1))\\\\&=(x^5-x-1)/(x^5+x^4)\end{aligned}

c) To calculate (fg)(x), we need to multiply function f(x) by function g(x):


\begin{aligned}(fg)(x)&=f(x)\cdot g(x)\\\\&=(x)/(x+1)\cdot (1)/(x^4)\\\\&=(x)/((x+1)x^4)\\\\&=(x)/(x^5+x^4)\\\\&=(1)/(x^4+x^3)\end{aligned}

d) To calculate (f/g)(x), we need to divide function f(x) by function g(x):


\begin{aligned}(f/g)(x)&=(f(x))/(g(x))\\\\&=((x)/(x+1))/((1)/(x^4))\\\\&=(x)/(x+1)\cdot (x^4)/(1)\\\\&=(x^5)/(x+1)\end{aligned}

A rational function is undefined when its denominator is equal to zero.

Therefore:

  • The domain of f(x) is (-∞, -1) ∪ (-1, ∞).
  • The domain of g(x) is (-∞, 0) ∪ (0, ∞).

To determine the domain of (f/g)(x), combine the domains of f(x) and g(x).

Therefore, the domain of (f/g)(x) is:

  • (-∞, -1) ∪ (-1, 0) ∪ (0, ∞).
User Mufazzal
by
8.7k points
Welcome to QAmmunity.org, where you can ask questions and receive answers from other members of our community.