Final answer:
To evaluate (4√(3) - √(2))(3√(2) + 2√(3)), we can use the FOIL method. Multiplying the binomials gives us 10√(6) + 18.
Step-by-step explanation:
We can evaluate the expression using the FOIL method. FOIL stands for First, Outer, Inner, Last, and it is used to multiply two binomials. In this case, we have two binomials: (4√(3) - √(2)) and (3√(2) + 2√(3)).
- Multiply the First terms: (4√(3)) * (3√(2)) = 12√(6)
- Multiply the Outer terms: (4√(3)) * (2√(3)) = 8√(9)
- Multiply the Inner terms: (-√(2)) * (3√(2)) = -3√(4)
- Multiply the Last terms: (-√(2)) * (2√(3)) = -2√(6)
Combine the like terms: 12√(6) + 8√(9) - 3√(4) - 2√(6).
Simplify further: 12√(6) - 2√(6) + 8√(9) - 3√(4).
Combine the like terms again: 10√(6) + 8√(9) - 3√(4).
Finally, simplify the radicals if possible: 10√(6) + 8√(9) - 3√(4) = 10√(6) + 8(3) - 3(2) = 10√(6) + 24 - 6 = 10√(6) + 18.
Learn more about Evaluating Expressions