Final answer:
To evaluate the function f(x) = -2(x + 4)^(2) + 2, follow the order of operations. Simplify inside the parentheses, then square the expression. Multiply the squared expression by -2. Finally, add 2 to the result.
Step-by-step explanation:
To evaluate the function f(x) = -2(x + 4)^(2) + 2, we can follow the order of operations. Here's how:
- Start by simplifying inside the parentheses: x + 4.
- Next, square the expression (x + 4) to get (x + 4)^(2).
- Multiply the squared expression by -2: -2(x + 4)^(2).
- Finally, add 2 to the result: -2(x + 4)^(2) + 2.
So, the work for the function f(x) = -2(x + 4)^(2) + 2 is:
f(x) = -2(x + 4)^(2) + 2
f(x) = -2(x^2 + 8x + 16) + 2
f(x) = -2x^2 - 16x - 32 + 2
f(x) = -2x^2 - 16x - 30
Learn more about Evaluating a function