Answer:
Step-by-step explanation:
For Big Bang Theory--
Redshift of Galaxies. The redshift of distant galaxies means that the Universe is probably expanding. ...
Microwave Background. Very early in its history, the whole Universe was very hot. ...
Mixture of Elements. As the Universe expanded and cooled down, some of the elements that we see today were created. ...
Looking back in time.
The earliest and most direct observational evidence of the validity of the theory are the expansion of the universe according to Hubble's law (as indicated by the redshifts of galaxies), discovery and measurement of the cosmic microwave background and the relative abundances of light elements produced by Big Bang ...
Against Big Bang Theory--
The contradictions between Big Bang theory predictions and observations are not at all limited to those that have been widely dubbed a “Crisis in Cosmology”. Despite the continuing popularity of the theory, essentially every prediction of the Big Bang theory has been increasingly contradicted by better and better data, as shown by many teams of researchers. The observations are, on the other hand, consistent with a non-expanding universe with no Big Bang. The real crisis in cosmology is that the Big Bang never happened.
Key contradicted predictions (detailed descriptions below):
1) Light elements: Lithium and Helium
Prediction: Any superhot explosion throughout the universe, like the Big Bang, would have generated a certain small amount of the light element lithium and a large amount of helium.
Observation: Yet as astronomers have observed older and older stars, the amount of lithium observed has gotten less and less, and, in the oldest stars is less than one tenth of the predicted level. The oldest stars near to us have less than half the amount of helium predicted. However, well-understood fusion processes in stars and reactions initiated by cosmic rays have accurately predicted the correct amounts of these and other light elements.
2) Antimatter-matter annihilation
Prediction: Since the intense radiation of the Big Bang would produce matter and antimatter in equal amounts, mutual annulation of particle-antiparticle pairs would reduce the surviving matter density to around 10 -17 protons/cm3.
Observation: the matter density in the universe is observed to be at least 10 -7 ions /cm3 more than 10 billion times higher than the Big Bang prediction.
Big Bang fix to prediction: To try to fix this well-known vast gap, Big Bang theorists have proposed some unknown asymmetry between matter and antimatter which would lead to more production of matter. This has never been observed in laboratory experiments. A consequence of this predicted imbalance is the decays of the proton, initially predicted to decay with a lifetime of 1030 years. Large scale experiments have contradicted this prediction was well, with no evidence of decay at all.
3) Surface-Brightness
Prediction: In any expanding universe, an optical illusion makes objects at high redshift appear larger and dimmer, so their surface brightness—the ratio of apparent brightness to apparent area—declines sharply with redshift.
Observation: Based on observations of thousands of galaxies, surface brightness is completely constant with distance, as expected in a universe that is NOT expanding.
Big Bang fix to Prediction: After observations showed that the surface brightness dimming did not occur, Big Bang theorists hypothesized that galaxies were much smaller in the distant past and have grown greatly. But observations have contradicted this fix as well, showing that there have not been enough galaxy mergers for the growth rates needed. In addition, the ultra-small galaxies hypothesized would have to have more mass in stars than total mass, an obvious impossibility.
4) Too Large Structures
Prediction: In the Big Bang theory, the universe is supposed to start off completely smooth and homogenous. Structure starts small and grows over time
Observation: As telescopes have peered farther into space, huger and huger structures of galaxies have been discovered, which are too large to have been formed in the time since the Big Bang.
This research tests a striking 1930s prediction of Big Bang hypothesis that objects at great distances should actually appear larger, not smaller. According to the hypothesis, this is because of an optical illusion due to the galaxies having been much closer when their light was emitted.
This prediction was repeated in the literature through the 1980s but in the 1990s, the Hubble Space Telescope did not confirm the prediction. Hubble’s images instead showed that the most distant galaxies do in fact look the smallest. A group of researchers then formulated an additional hypothesis that galaxies actually grow in size with time.
Many researchers, including Dr. Scarpa, have demonstrated evidence that a small modification of gravitational forces, termed MOND, could also explain the data.