Explanation:
To represent the population (P) of bacteria after 't' hours, We can use the exponential equation:
![\: \longrightarrow \: \: \large \boxed{ \sf{\[P(t) = P_0 \cdot 3^t\]}}](https://img.qammunity.org/2024/formulas/mathematics/high-school/ux5vnd10nhz9o6gf3k4ymx5nsnomfcf9if.png)
Where:
- (P(t)) is the population after 't' hours.
is the initial population, which is 100 bacteria in this case.- 't' is the number of hours.
↪ Now, to calculate the population after 5 hours:
![➟ \: \: \: \sf{\[P(5) = 100 \cdot 3^5\]</p><p>}](https://img.qammunity.org/2024/formulas/mathematics/high-school/zod5ejozl9jlgsb4pfuazvlxafttqua08m.png)
![</p><p>➟ \: \: \: \sf{\[P(5) = 100 \cdot 243\]</p><p>}](https://img.qammunity.org/2024/formulas/mathematics/high-school/djq9qktqlh5tlmbn0zpk8i4r9kaey0m4ms.png)
![➟ \: \: \: \sf{\[P(5) = 24,300\]}](https://img.qammunity.org/2024/formulas/mathematics/high-school/x80yhir01wlhuz1jtiyx36hefarawi8p2z.png)
So, the population of bacteria after 5 hours will be 24,300.