142k views
1 vote
Given that m∠A = (17x)º, m∠C = (8x + 23)º, and m∠D = 122º, what is m∠B?

User Ory Band
by
8.0k points

1 Answer

3 votes

Answer:

To find m∠B, we will need to use the fact that the sum of the angles in a quadrilateral is 360 degrees.

m∠A + m∠B + m∠C + m∠D = 360º

Substituting the given values, we get:

(17x)º + m∠B + (8x + 23)º + 122º = 360º

Simplifying and solving for m∠B:

25x + 145º = 360º

25x = 215º

x = 8.6

Substituting x back into the equation:

m∠A = (17x)º = (17)(8.6)º = 146.2º

m∠C = (8x + 23)º = (8)(8.6)º + 23º = 95.8º

Now we can find m∠B:

(17x)º + m∠B + (8x + 23)º + 122º = 360º

146.2º + m∠B + 95.8º + 122º = 360º

m∠B = 360º - 364º

m∠B = -4º

However, an angle cannot be negative, so this means that there is no solution that satisfies the given conditions. It is possible that there is a typo or mistake in the problem statement.

User Mangecoeur
by
8.2k points
Welcome to QAmmunity.org, where you can ask questions and receive answers from other members of our community.

9.4m questions

12.2m answers

Categories