Final answer:
The coordinates after translating PQRS 2 units left and 5 units down are: P'(-6, -2), Q'(-3, -2), R'(-1, -9), and S'(-11, -5), matching option C. Thus the correct option is C. P'(-6, -2), Q'(-3, -2), R'(-1, -9), and S'(-11, -5)
Step-by-step explanation:
To translate the quadrilateral PQRS 2 units to the left and 5 units down, subtract 2 from the x-coordinates and 5 from the y-coordinates of the original vertices.
The coordinates of the vertices after translation are: P'(-6, -2), Q'(-3, -2), R'(-1, -9), and S'(-11, -5).
To find the new coordinates after the translation, subtract 2 from the x-coordinates of P, Q, R, and S, and subtract 5 from their y-coordinates:
P(-4, 3) → P'(-4 - 2, 3 - 5) → P'(-6, -2)
Q(0, 3) → Q'(0 - 2, 3 - 5) → Q'(-2, -2)
R(2, 0) → R'(2 - 2, 0 - 5) → R'(-1, -5)
S(-2, 0) → S'(-2 - 2, 0 - 5) → S'(-4, -5)
Therefore, the translated coordinates are P'(-6, -2), Q'(-3, -2), R'(-1, -9), and S'(-11, -5). This corresponds to option C. Thus the correct option is C. P'(-6, -2), Q'(-3, -2), R'(-1, -9), and S'(-11, -5).