223k views
25 votes
Please help!!
Find the center, vertices, and foci of the ellipse with equation

Please help!! Find the center, vertices, and foci of the ellipse with equation-example-1

2 Answers

9 votes

Answer:

center (0;0), vertices (0;10) and (0;-10), foci (0;6) and (0;-6)

Explanation:

User Jos Van Weesel
by
4.0k points
8 votes

Answer:


\boxed{\boxed{C) Center:(0,0);\: Vertices:(-10,0),(10,0);\:Foci:(-6,0),(0,6)}}

Explanation:

to understand this

you need to know about:

  • conic geometry
  • algebra
  • PEMDAS

given:


  • \frac{ {x}^(2) }{100} + \frac{ {y}^(2) }{64} = 1

to find:

  • center
  • vertices
  • foci

tips and formulas:


  • \sf ellipse \:equation : \\ \tt\frac{( {x}^(2) - h)}{ {a}^(2) } + \frac{( {y}^(2) - k)}{ {b}^(2) } = 1

  • \sf c(h,k)

  • \sf v(h \pm a,k)

  • \sf F(h\pm c,k)

  • \sf c = \sqrt{ {a}^(2) - {b}^(2) }

let's solve:


  1. \sf rewrite \:the \: given \: equation \: as \: ellipse \: equation \\ \tt \frac{ {(x - 0)}^(2) }{100} + \frac{ ({y - 0)}^(2) }{64} = 1

since we can see that h and k is 0

therefore

c(0,0)


\sf vertices :( h \pm a,k)

given:a²=100

let's find a

a=√100

a=10

therefore

vertices:(0±10,0)

=(0+10,0) and (0-10,0)

=(10,0) and (-10,0)


\sf foci : (h \pm c,k)


\tt c = \sqrt{ {a}^(2) - {b}^(2) }


\sf \: c = \sqrt{ {10}^(2) - {8}^(2) } \\ \sf \: c = √((10 + 8)(10 - 8)) \\ \sf c = √((18)(2)) \\ \sf c = √(36) \\ \tt c = 6

therefore,

foci:(h±c,k)

=(0±6,0)

=(0+6,0) and (0-6,0)

=(6,0) and (-6,0)


\text{also see the graph}

Please help!! Find the center, vertices, and foci of the ellipse with equation-example-1
User Luigi Caradonna
by
5.1k points