89.3k views
4 votes
For the rotation 65 9 ∘ 659 ∘ , find the coterminal angle from 0 ∘ ≤ � < 36 0 ∘ 0 ∘ ≤θ<360 ∘ , the quadrant, and the reference angle. the coterminal angle is °, which lies in quadrant , with a reference angle of °.

User Theodores
by
9.0k points

1 Answer

1 vote

425°

Explanation:

To find the coterminal angle for
(65^\circ), We can add or subtract multiples of (360°) until we get an angle between (0°) and (360°).


\implies \: \: (65^\circ + 360^\circ = 425^\circ)

So, one coterminal angle is (425°).

To determine the quadrant, We can look at the original angle (65°):

- Quadrant I:
\sf{(0^\circ < \theta < 90^\circ)}

- Quadrant II:
\sf(90^\circ < \theta < 180^\circ)

- Quadrant III:
\sf{(180^\circ < \theta < 270^\circ)}

- Quadrant IV:
\sf{(270^\circ < \theta < 360^\circ)}

In this case, (65°) lies in Quadrant I.

Now, to find the reference angle, We can use the formula:


\small{ \longrightarrow \: (\text{Reference Angle} = |\text{Angle} - 90^\circ * \text{Quadrant Number}|)}


\small{ \longrightarrow \: (\text{Reference Angle} = |65^\circ - 90^\circ * 1| = |65^\circ - 90^\circ| = |25^\circ| = 25^\circ)}

So, the coterminal angle is (425°), which lies in Quadrant I, with a reference angle of (25°).

User Remon Shehatta
by
8.1k points