184k views
3 votes
Expand the following.
(2x² + 3x-4) (4x − 3) - ?

2 Answers

6 votes
Let's expand the expression (2x² + 3x - 4) * (4x - 3) step by step using the distributive property:

(2x² + 3x - 4) * (4x - 3)

First, multiply each term in the first parenthesis by each term in the second parenthesis:

= (2x² * 4x) + (2x² * (-3)) + (3x * 4x) + (3x * (-3)) + (-4 * 4x) + (-4 * (-3))

Now, perform the multiplications:

= 8x³ - 6x² + 12x² - 9x - 16x + 12

Next, combine like terms:

= 8x³ + (12x² - 6x²) + (-16x - 9x) + 12

= 8x³ + 6x² - 25x + 12

So, the expanded form of the expression (2x² + 3x - 4) * (4x - 3) is 8x³ + 6x² - 25x + 12.
User Tjac
by
8.7k points
6 votes

Answer: 8x^3 +6x^2 -25x +12

Explanation:

(2x² + 3x-4) (4x − 3)

Expand:

4x(2x² + 3x-4) -3(2x² + 3x-4)

Multiply:

8x^3 +12x^2 -16x -6x^2 -9x +12

Combine the like terms/simplify:
8x^3 +6x^2 -25x +12

User Pwyg
by
8.4k points

No related questions found