25.6k views
0 votes
AWARDING 100 PTS FOR DIS!!!! I NEED HELPPP

AWARDING 100 PTS FOR DIS!!!! I NEED HELPPP-example-1
AWARDING 100 PTS FOR DIS!!!! I NEED HELPPP-example-1
AWARDING 100 PTS FOR DIS!!!! I NEED HELPPP-example-2

2 Answers

7 votes

Answer:


\textsf{1)} \quad (625)/(1296)


\textsf{2)}\quad 0.21\; \sf (nearest\;hundredth)

Explanation:

Question 1

Given expression:


(\left(\left((6)/(5)\right)^5\right)^(-2))/(\left((6)/(5)\right)^(-6))

To simplify the given expression, we can use the following laws of exponents:


\boxed{\begin{array}{rl}\underline{\sf Laws\;of\;Exponents}\\\\\sf Power\;of\;a\;Power:&(a^m)^n=a^(mn)\\\\\sf Negative\;Exponent:&a^(-m)=(1)/(a^m)\\\\\sf Product:&a^m * a^n=a^(m+n)\\\\\sf Power\;of\;a\;Quotient:&\left((a)/(b)\right)^m=(a^m)/(b^m)\\\\\end{array}}

First, apply the power of a power law to the numerator:


(\left((6)/(5)\right)^(5\cdot-2))/(\left((6)/(5)\right)^(-6))


(\left((6)/(5)\right)^(-10))/(\left((6)/(5)\right)^(-6))

Apply the negative exponent law to the numerator:


(1)/(\left((6)/(5)\right)^(10)\cdot\left((6)/(5)\right)^(-6) )

Apply the product law to the denominator:


(1)/(\left((6)/(5)\right)^(10+(-6)))


(1)/(\left((6)/(5)\right)^(4))

Apply the power of a quotient law to the denominator:


(1)/((6^4)/(5^4))


\textsf{Apply the fraction rule} \quad (a)/((b)/(c))=(ac)/(b):


(1 \cdot 5^4)/(6^4)


( 5^4)/(6^4)

Finally, compute the numbers:


\Large\boxed{\boxed{(625)/(1296)}}


\hrulefill

Question 2

Given expression:


\left(\left(1.3\right)^3\right)^(-2)

To simplify the given expression, we can use the following laws of exponents:


\boxed{\begin{array}{rl}\underline{\sf Laws\;of\;Exponents}\\\\\sf Power\;of\;a\;Power:&(a^m)^n=a^(mn)\\\\\sf Negative\;Exponent:&a^(-m)=(1)/(a^m)\end{array}}

First, apply the power of a power law:


\left(1.3\right)^(3\cdot(-2))


\left(1.3\right)^(-6)

Now, apply the negative exponent law:


(1)/(\left(1.3\right)^6)

Compute 1.3⁶ using a calculator:

1.3⁶ = 4.826809

Rewrite this as a fraction:


4.826809=(4826809)/(1000000)

Therefore:


(1)/(1.3^6)=(1)/((4826809)/(1000000))=(1000000)/(4826809)

Using a calculator:


(1000000)/(4826809)=0.207176211...=0.21\; \sf (nearest\;hundredth)

So, the simplified expression rounded to the nearest hundredth is:


\Large\boxed{\boxed{0.21}}

User Abhishek Kanojia
by
8.3k points
5 votes

Answer:


\textsf{1st question:}\sf (625)/(1296)


\textsf{2nd question:} 0.21

Explanation:

Before solving this:

We need to know the law of indices:

When power has the same base:


\sf \begin{aligned} \textsf{ Multiplication law} &\sf : a^m * a^n = a^(m+n) \\\\ \textsf{Zeroth power rule} &\sf = a^(0) = 1\\\\ \textsf{Division law} &\sf : = (a^m)/(a^n) = a^(m-n) \\\\ \textsf{Negative power rule}&\sf : a^(-n) = (1)/(a^n) \\\\ \textsf{Power law}&\sf : (a^m)^n = a^(mn) \end{aligned}

For 1st Question:


\sf ( \left(\left((6)/(5) \right)^5\right)^(-2))/(\left((6)/(5) \right)^(-6))

Using Power law:


\sf ( \left((6)/(5) \right)^(5* -2))/(\left((6)/(5) \right)^(-6))


\sf ( \left((6)/(5) \right)^(-10))/(\left((6)/(5) \right)^(-6))

Now, using Division law:


\sf \left((6)/(5) \right)^(-10-(-6))


\sf \left((6)/(5) \right)^(-10+6))


\sf \left((6)/(5) \right)^(-4)

In order to make a positive power, replace 6 by 5 and 5 by 6 or using negative power rule:

we get


\sf \left((5)/(6) \right)^(4)

Distribute the power:


\sf (5^4)/(6^4)


\sf (625)/(1296)

So, answer in the fraction is:


\sf (625)/(1296)


\hrulefill

For 2nd Question:


\left((1.3)^3\right)^(-2)

Using power rule:


\sf (1.3)^(3* -2)


\sf (1.3)^(-6)

Using Negative power rule:


\sf (1)/(1.3)^6

Using the calculator we can find the value:


\sf (1)/(4.826809)


\sf 0.207176211

In the nearest hundred:


\sf 0.21

User Rossisdead
by
7.5k points

Related questions

1 answer
1 vote
201k views
asked Jan 17, 2023 72.6k views
Jeffy Lazar asked Jan 17, 2023
by Jeffy Lazar
8.1k points
2 answers
11 votes
72.6k views
Welcome to QAmmunity.org, where you can ask questions and receive answers from other members of our community.