23.1k views
0 votes
Use logarithmic differentiation to find dy/dx. y = x^x - 8, x > 0.

1 Answer

6 votes

You need to know these:


\sf\\\textsf{1. Chain rule: }\\\\(dy)/(dx)=(dy)/(du)* (du)/(dx)


\sf\\\textsf{2. Product rule}\\\\(d(uv))/(dx)=u(dv)/(dx)+v(du)/(dx)


\sf\\\textsf{3.} (d(lnx))/(dx)=(1)/(x)


\sf\\\textsf{4. }y=x^x\\\textsf{or, }ln(y)=ln(x^x)=xlnx\\\\\textsf{or, }(d(lny))/(dy)=(d(xlnx))/(dx)\\\\\textsf{or, }(d(lny))/(dy)*(dy)/(dx)=x(d(lnx))/(dx)+lnx(dx)/(dx)


\sf\\\textsf{or, }(1)/(y)* (dy)/(dx)=x(1)/(x)+lnx=1+lnx\\\\\textsf{or, }(dy)/(dx)=y(1+lnx)\\\\\textsf{Substitute }y=x^x\\\textsf{}\ \ \ \ (d(x^x))/(dx)=x^x(1+lnx)

Answer:


\sf\\y=x^x-8\\


\textsf{Applying natural log on both sides,}


\sf\\ln(y)=ln(x^x-8)


\textsf{Differentiating both sides with respect to x,}


\sf\\(d(lny))/(dx)=(d[ln(x^x-8)])/(dx)


\sf\\\textsf{or, }(d(lny))/(dy)*(dy)/(dx)=(d[ln(x^x-8)])/(d(x^x-8))*(d(x^x-8))/(dx^x)*(dx^x)/(dx)


\sf\\\textsf{or, }(1)/(y)* (dy)/(dx)=(1)/(x^x-8)*1* x^x(1+lnx)


\sf\\\textsf{or, }(1)/(y)* (dy)/(dx)=(x^x(1+lnx))/(x^x-8)\\


\sf\\\textsf{or, }(dy)/(dx)=y*(x^x(1+lnx))/(x^x-8)


\sf\\\textsf{or, }(dy)/(dx)=((x^x-8)[x^x(1+lnx)])/(x^x-8)\\


\sf\\\therefore\ (dy)/(dx)=x^x(1+lnx)

User Grammarian
by
8.2k points

Related questions

asked Aug 1, 2024 206k views
Ding Peng asked Aug 1, 2024
by Ding Peng
8.7k points
1 answer
0 votes
206k views
asked Jan 26, 2024 147k views
Dani Vijay asked Jan 26, 2024
by Dani Vijay
7.7k points
1 answer
0 votes
147k views