150k views
2 votes
A line has a slope of 10 and includes the points ( – 4,10) and ( – 6,a). What is the value of a? a=

User Sasi
by
8.6k points

2 Answers

2 votes


(\stackrel{x_1}{-4}~,~\stackrel{y_1}{10})\qquad (\stackrel{x_2}{-6}~,~\stackrel{y_2}{a}) \\\\\\ \stackrel{slope}{m}\implies \cfrac{\stackrel{\textit{\large rise}} {\stackrel{y_2}{a}-\stackrel{y1}{10}}}{\underset{\textit{\large run}} {\underset{x_2}{-6}-\underset{x_1}{(-4)}}} ~~ = ~~\stackrel{\stackrel{\textit{\small slope}}{\downarrow }}{ 10 }\implies \cfrac{a-10}{-6+4}=10\implies \cfrac{a-10}{-2}=10 \\\\\\ a-10=-20\implies \boxed{a=-10}

User Tobiaswk
by
8.1k points
1 vote

Slope

Let's try and find the value of a.

Use our slope formula:


\sf{m=\cfrac{y_2-y_1}{x_2-x_1}}

Substitute all the values.


\sf{10=\cfrac{a-10}{-6-(-4)}}

Simplify.


\sf{10=\cfrac{a-10}{-6+4}}


\sf{10=\cfrac{a-10}{-2}}

Multiply both sides by -2.


\sf{-20=a-10}

Add 10 to both sides:


\sf{-20+10=a}

Simplify.


\sf{-10=a}

Therefore, a = -10.

User Jiehong
by
8.3k points

No related questions found