97.1k views
2 votes
When the volume in the container is 280 cm^3, the pressure is 0.8 atm. What is the pressure inside the container when the volumE is 70 cm^3?

User Thepolina
by
7.5k points

1 Answer

6 votes

Answer:

3.2 atm

Explanation:

To find the pressure inside the container when the volume is 70 cm^3, you can use the ideal gas law, which relates pressure (P), volume (V), and the number of moles (n) of a gas:

PV = nRT

Where:

P = Pressure (in atmospheres, atm)

V = Volume (in liters, L)

n = Number of moles

R = Ideal gas constant (approximately 0.0821 L·atm/(mol·K))

T = Temperature (in Kelvin, K)

In this case, you have the initial pressure (P1) and volume (V1) when the volume is 280 cm^3:

P1 = 0.8 atm

V1 = 280 cm^3 = 0.28 L (since 1 L = 1000 cm^3)

Now, you want to find the pressure (P2) when the volume is 70 cm^3:

V2 = 70 cm^3 = 0.07 L

You can set up a proportion using the ideal gas law for both initial and final conditions:

P1 * V1 = P2 * V2

Substitute the known values:

0.8 atm * 0.28 L = P2 * 0.07 L

Now, solve for P2:

P2 = (0.8 atm * 0.28 L) / 0.07 L

P2 = 3.2 atm

So, when the volume inside the container is 70 cm^3, the pressure is approximately 3.2 atm.

User Iaroslav Siniugin
by
8.4k points

No related questions found

Welcome to QAmmunity.org, where you can ask questions and receive answers from other members of our community.