The flux across the circle
for the vector field
is 0
The flux ф across a curve C for a given vector field
using the Flux Form of Green's Theorem, you can use the following formula:
![\[\Phi = \iint_D \left((\partial Q)/(\partial x) - (\partial P)/(\partial y)\right) \,dA,\]](https://img.qammunity.org/2024/formulas/mathematics/college/ite1odleq84j8eipx0aypm4tcymet7tqs6.png)
where D is the region bounded by the curve C and P and Q are the components of the vector field

For
and circle
we can parametrize the circle using polar coordinates:
![\[x = r \cos \theta,\]](https://img.qammunity.org/2024/formulas/mathematics/college/f6qm4pxcc2o919pangvodn2xtj1ty2bxux.png)
![\[y = r \sin \theta,\]](https://img.qammunity.org/2024/formulas/mathematics/college/b1w0no5tfu3mh7shihaq1km1a5xm2oegav.png)
where

is the radius of the circle. The integral becomes:
![\[\Phi = \int_(0)^(2\pi) \int_(0)^(3) \left((\partial(2r \cos \theta))/(\partial r) - (\partial(3r \sin \theta))/(\partial \theta)\right) r \,dr \,d\theta.\]](https://img.qammunity.org/2024/formulas/mathematics/college/25igu83g53yh6izmbtew730ztonm9ehcr6.png)
Let's compute this integral step by step:
![\[ \int_(0)^(2\pi) \int_(0)^(3) (2\cos \theta - 3r \cos \theta) \,dr \,d\theta\]](https://img.qammunity.org/2024/formulas/mathematics/college/c9ohhuqhm0v4hpt25stpd59iz5bdqhkzrz.png)
![\[\int_(0)^(2\pi) \left[\left(r\Big|_(0)^(3) \cdot (2\cos \theta - 3r \cos \theta)\right) - \int_(0)^(3) -3\cos \theta \,dr\right] \,d\theta\]](https://img.qammunity.org/2024/formulas/mathematics/college/pheyklk385oadcaqndt5ggq42iib4jwdhu.png)
![\[\int_(0)^(2\pi) \left[3(2\cos \theta) + \int_(0)^(3) 3\cos \theta \,dr\right] \,d\theta\]](https://img.qammunity.org/2024/formulas/mathematics/college/htcveqod2vo5r75gw022zxo4p8k2z5w54d.png)
![\[\int_(0)^(2\pi) \left[6\cos \theta + 3r\cos \theta\Big|_(0)^(3)\right] \,d\theta\]](https://img.qammunity.org/2024/formulas/mathematics/college/xh0os5e74til50nkoidmewivxs62dygbc9.png)
![\[ \int_(0)^(2\pi) \left[18\cos \theta + 9\cos \theta\right] \,d\theta\]](https://img.qammunity.org/2024/formulas/mathematics/college/qwy6sdk7glz5vx6u1ob5cdodmxksh8opzy.png)
![\[ \int_(0)^(2\pi) 27\cos \theta \,d\theta\]](https://img.qammunity.org/2024/formulas/mathematics/college/dmiwo5jtc953fok8cew12lltm5ue86o297.png)
![\[ 27\int_(0)^(2\pi) \cos \theta \,d\theta\]](https://img.qammunity.org/2024/formulas/mathematics/college/6iqqq10srkld7xcw5irdbo2d36djyvlxlb.png)
![\[ 27\Big[\sin \theta\Big|_(0)^(2\pi)\Big]\]](https://img.qammunity.org/2024/formulas/mathematics/college/kd318yvqx1k437awdw2nrwbgqiirddvrqj.png)
![\[27(0)\]](https://img.qammunity.org/2024/formulas/mathematics/college/in1uctrbwl59uixkzw11n8yfkldkflez4y.png)
![\[= 0.\]](https://img.qammunity.org/2024/formulas/mathematics/college/wgrtmrws2kk18xhpi2s4wdtubxvwentzkt.png)
So, the flux across the circle
for the vector field
is 0
For the second problem, with
and the boundary of the square
times
you need to parametrize the square and perform a similar integration as shown above. If you'd like assistance with that specific problem, let me know!