Answer:
80 m/s
Step-by-step explanation:
Given:
x₀ = 0 m
x = 500 m
y₀ = 50 m
y = 0 m
v₀ₓ = v₀ cos 20°
v₀ᵧ = v₀ sin 20°
aₓ = 0 m/s²
aᵧ = -10 m/s²
Find: v₀
In the y direction:
y = y₀ + v₀ᵧ t + ½ aᵧ t²
0 = 50 + (v₀ sin 20°) t + ½ (-10) t²
0 = 50 + v₀ sin 20° t − 5t²
5t² − 50 = v₀ sin 20° t
In the x direction:
x = x₀ + v₀ₓ t + ½ aₓ t²
500 = 0 + (v₀ cos 20°) t + ½ (0) t²
500 = v₀ cos 20° t
Divide the first equation by the second equation.
(5t² − 50) / 500 = tan 20°
5t² − 50 = 500 tan 20°
t² − 10 = 100 tan 20°
t² = 10 + 100 tan 20°
t ≈ 6.81 seconds
Plug into either equation.
v₀ = 500 / (t cos 20°)
v₀ ≈ 78.1 m/s
Rounded to one significant figure, the initial velocity is 80 m/s.