The value of the given integral is 2
.
To compute the line integral
around the given closed curve C, we need to parameterize the curve and then evaluate the integral using the given vector field F.
The curve C is a circle of radius 2 centered at (1, 4, 1) lying in the plane x + y + z = 6. We can parameterize this circle using polar coordinates:
![\[x &= r\cos(\theta) + 1 \\y &= r\sin(\theta) + 4 \\z &= 6 - x - y\end{align*} \]](https://img.qammunity.org/2024/formulas/mathematics/high-school/tx4h1sxypjw789oni4qprh63b67nhjz7bt.png)
where r = 2is the radius.
Now, differentiate these expressions with respect to
to obtain
.


Now, compute
and integrate over the parameter interval
since the curve is oriented clockwise:
![\[ \int_C \mathbf{F} \cdot d\mathbf{r} = \int_0^(2\pi) \mathbf{F} \cdot \frac{d\mathbf{r}}{d\theta} \, d\theta \]](https://img.qammunity.org/2024/formulas/mathematics/high-school/8vf5w895pzf912v1py2zd43p73q30p3eq6.png)
![\[ \int_C \mathbf{F} \cdot d\mathbf{r} = \int_0^(2\pi) (3\sin(\theta) + 6\cos(\theta) - 2(\sin(\theta) + \cos(\theta))) \, d\theta \]](https://img.qammunity.org/2024/formulas/mathematics/high-school/prmaz0tt100gfphlk5uus35exupelyvq1d.png)
Evaluate this integral to get the numerical value. Note that
and
have periodic behavior, so the integral simplifies.
The result is approximately 2
or 6.283.