Answer:
The weight of oranges growing in an orchard is normally distributed with a mean weight of 4.5 oz. and a standard deviation of 0.5 oz. Using the empirical rule, what percentage of the oranges from the orchard weigh between 3 oz. and 6 oz.?
Explanation:
The Empirical Rule states that, for a normally distributed random variable:
68% of the measures are within 1 standard deviation of the mean.
95% of the measures are within 2 standard deviation of the mean.
99.7% of the measures are within 3 standard deviations of the mean.
In this problem, we have that:
Mean = 6
Standard deviation = 0.5\
Middle 95% of weights:
By the Empirical Rule, within 2 standard deviations of the mean.
6 - 2*0.5 = 5
6 + 2*0.5 = 7
The interval that would represent weights of the middle 95% of all oranges from this orchard is from 5 oz to 7 oz.