Answer:
(-1, -9).
Explanation:
Midpoint formula:
M(x_m, y_m) = ((x_A + x_B) / 2, (y_A + y_B) / 2)
Given that S(-4, -6) is the midpoint of line segment TR and we know the coordinates of T(-7, -3), we can use the midpoint formula to solve for R:
M(x_m, y_m) = ((x_T + x_R) / 2, (y_T + y_R) / 2)
Substituting in the given coordinates:
(-4, -6) = ((-7 + x_R) / 2, (-3 + y_R) / 2)
Now we can solve for the coordinates of R:
-4 = (-7 + x_R) / 2
-6 = (-3 + y_R) / 2
Solve for x_R and y_R:
-7 + x_R = -8
x_R = -1
-3 + y_R = -12
y_R = -9
So, the coordinates of point R are (-1, -9).