11.3k views
0 votes
Answer just the first part of the question

Solve the equation.
) i)3^(2x )-3^(x+2 )-3^(1+x )=27

Answer just the first part of the question Solve the equation. ) i)3^(2x )-3^(x+2 )-3^(1+x-example-1
User Kyler Love
by
9.1k points

1 Answer

4 votes

Answer:


\textsf{(i)} \quad x =(\ln(6 +3√(7)))/(\ln (3))


\textsf{(ii)} \quad y=3

Explanation:

Question (i)

Given equation:


3^(2x)-3^(x+2)-3^(1+x)=27

Apply exponent rules to rewrite each term on the left side of the equation in terms of
3^x:


(3^x)^2-3^(x)\cdot 3^(2)-3^(1)\cdot 3^(x)=27

Factor out
3^x:


(3^x)^2-3^(x)(3^(2)+3^(1))=27


(3^x)^2-3^(x)(12})=27


\textsf{Substitute\;$u = 3^x$:}


u^2-12u=27

Subtract 27 from both sides to create a quadratic equation in the form ax² + bx + c = 0:


u^2-12u-27=0

Solve the equation for u using the quadratic formula.


\boxed{\begin{array}{c}\underline{\sf Quadratic\;Formula}\\\\x=(-b \pm √(b^2-4ac))/(2a)\\\\\textsf{when}\;ax^2+bx+c=0\\\end{array}}

In this case:

  • a = 1
  • b = -12
  • c = -27

Therefore:


u=(-(-12) \pm √((-12)^2-4(1)(-27)))/(2(1))


u=(12 \pm √(144+108))/(2)


u=(12 \pm √(252))/(2)


u=(12 \pm 6 √(7))/(2)


u=6 \pm 3√(7)

Substitute back
u = 3^x and solve for x.

Solution 1


3^x=6 +3√(7)


\ln (3^x)=\ln(6 +3√(7))


x \ln (3)=\ln(6 +3√(7))


x =(\ln(6 +3√(7)))/(\ln (3))

Solution 2


3^x=6 -3√(7)

As
6 - 3√(7) < 0, and
3^x > 0, there are no solutions for x ∈ R.

Therefore, the only valid solution to the given equation is:


\large\boxed{\boxed{x =(\ln(6 +3√(7)))/(\ln (3))}}


\hrulefill

Question (ii)

Given equation:


2^(2y+1)-15(2^y)=8

Apply exponent rules to rewrite each term on the left side of the equation in terms of
2^y:


2^(2y)\cdot 2^1-15(2^y)=8


(2^(y))^2\cdot 2-15(2^y)=8


2(2^(y))^2-15(2^y)=8

Subtract 8 from both sides:


2(2^(y))^2-15(2^y)-8=0


\textsf{Substitute\;$u = 2^y$:}


2u^2-15u-8=0

Factor the quadratic equation:


\begin{aligned}2u^2-16u+u-8&amp;=0\\2u(u-8)+1(u-8)&amp;=0\\(u-8)(2u+1)&amp;=0\end{aligned}

Solve for u:


u-8=0 \implies u=8


2u+1=0 \implies u=-(1)/(2)

Substitute back
u = 2^y and solve for y.

Solution 1


\begin{aligned}2^y&amp;=8\\2^y&amp;=2^3\\y&amp;=3\end{aligned}

Solution 2


2^y=-(1)/(2)

As
2^y > 0, there are no solutions for y ∈ R.

Therefore, the only valid solution to the given equation is:


\large\boxed{\boxed{y=3}}

User Pswaminathan
by
7.7k points

No related questions found