137k views
3 votes
Simplify the expression and rewrite in radical form.

(Equation + multiple choice options in attached image)

Simplify the expression and rewrite in radical form. (Equation + multiple choice options-example-1

1 Answer

2 votes

Answer:

Third one:


\sf 5 x^2y^3 \sqrt[3]{x^2}

Explanation:

Simplify the expression:


\sf 5 \sqrt[3]{x} \cdot x^{(7)/(3)} \cdot y^{(7)/(4)} \cdot \sqrt[4]{y^5}

Convert cube root in terms of power.


\sf 5 \cdot x^{(1)/(3)}\cdot x^{(7)/(3) }\cdot y^{(7)/(4) }\cdot y^{(5)/(4)}

Simplify the expression using the product of powers rule.


\sf 5\cdot x^{\left((1)/(3) + (7)/(3) \right)} y^{\left((7)/(4)+(5)/(4)\right)}

Simplify the expression of power.


\sf 5\cdot x^{(8)/(3) }\cdot y^3

Convert the power of x in terms of cube root.


\sf 5\cdot \sqrt[3]{x^8} \cdot y^3

Simplify the expression using the cube root rule.


\sf 5\cdot \sqrt[3]{x^8} \cdot y^3


\sf 5\cdot \sqrt[3]{x^6 \cdot x^2} \cdot y^3


\sf 5\cdot x^2 \cdot \sqrt[3]{x^2} \cdot y^3

So, the answer is:


\sf 5 x^2y^3 \sqrt[3]{x^2}


\hrulefill

Note:

Power rule:


\sf a^n \cdot a^m = a^((n+m))

Product rule:

\sf (a\cdot b)^n = a^n \cdot b^n

User AshClarke
by
8.1k points

No related questions found