137k views
3 votes
Simplify the expression and rewrite in radical form.

(Equation + multiple choice options in attached image)

Simplify the expression and rewrite in radical form. (Equation + multiple choice options-example-1

1 Answer

2 votes

Answer:

Third one:


\sf 5 x^2y^3 \sqrt[3]{x^2}

Explanation:

Simplify the expression:


\sf 5 \sqrt[3]{x} \cdot x^{(7)/(3)} \cdot y^{(7)/(4)} \cdot \sqrt[4]{y^5}

Convert cube root in terms of power.


\sf 5 \cdot x^{(1)/(3)}\cdot x^{(7)/(3) }\cdot y^{(7)/(4) }\cdot y^{(5)/(4)}

Simplify the expression using the product of powers rule.


\sf 5\cdot x^{\left((1)/(3) + (7)/(3) \right)} y^{\left((7)/(4)+(5)/(4)\right)}

Simplify the expression of power.


\sf 5\cdot x^{(8)/(3) }\cdot y^3

Convert the power of x in terms of cube root.


\sf 5\cdot \sqrt[3]{x^8} \cdot y^3

Simplify the expression using the cube root rule.


\sf 5\cdot \sqrt[3]{x^8} \cdot y^3


\sf 5\cdot \sqrt[3]{x^6 \cdot x^2} \cdot y^3


\sf 5\cdot x^2 \cdot \sqrt[3]{x^2} \cdot y^3

So, the answer is:


\sf 5 x^2y^3 \sqrt[3]{x^2}


\hrulefill

Note:

Power rule:


\sf a^n \cdot a^m = a^((n+m))

Product rule:

\sf (a\cdot b)^n = a^n \cdot b^n

User AshClarke
by
8.1k points

No related questions found

Welcome to QAmmunity.org, where you can ask questions and receive answers from other members of our community.

9.4m questions

12.2m answers

Categories